【答案】:解:①绕x轴旋转所得旋转体的体积:V₁=[0,2]∫πy²dx=[0,2]∫π(x³)²dx=[π(x^7)/7]︱[o,2]=128π/7②绕y轴旋转所得旋转体的体积:x=y^(1/3),y₁=0,y₂=8.V₂=32π-[0,8]∫π[y^(1/3)]²dy=32π-[0,8]π∫[y^(2/3)]dy=32π-π[(3/5)y^(5/3)]︱[0,8]=32π-π[(3/5)8^(5/3)=32π-(96/5)π=(64/5)π=12.8π