曲线ρ=2acosθ所围成图形的面积 用定积分 为什么积分范围是(-π⼀2,π⼀2)而不是(0,2π)?

2024-12-06 22:53:58
推荐回答(3个)
回答1:

首先,圆心不是在原点,在原点的才是0→2π

可以将这曲线变为直角坐标

ρ = 2acosθ

ρ² = 2aρcosθ

x² + y² = 2ax

(x - a)² + y² = a²

圆心(a,0)

这圆是在第一、第四象限的,左面紧贴着y轴

所以角度范围也是第一、第四象限,即- π/2→π/2

扩展资料:

若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

回答2:

曲线 ρ=2acosθ 形成的圆形在极轴右侧,即从 (-π/2,π/2) 的区域

回答3:

首先,圆心不是在原点,在原点的才是0→2π
可以将这曲线变为直角坐标
ρ = 2acosθ
ρ² = 2aρcosθ
x² + y² = 2ax

(x - a)² + y² = a²
圆心(a,0)
这圆是在第一、第四象限的,左面紧贴着y轴
所以角度范围也是第一、第四象限,即- π/2→π/2