1)如图1,在ΔABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;

2025-06-01 05:48:20
推荐回答(1个)
回答1:

  • 解:(1)∵∠A=40°,
    ∴∠ABC+∠ACB=180°-40°=140°,
    ∵∠ABC、∠ACB的平分线相交于点O,
    ∴∠1+∠2=1/2∠ABC+1/2∠ACB=1/2×140°=70°

    ∴∠BOC=180°-(∠1+∠2)=110°,

    (2)如图2,∵∠A′=40°,
    ∴∠A′B′C′+∠A′C′B′=180°-40°=140°,
    ∴∠MB′C′+NC′B′=360°-140°=220°,
    ∵B′O′、C′O′分别平分∠MB′C′,∠NC′B′,

    ∴∠1=1/2∠MB′C′,∠2=1/2∠NC′B′,

    ∴∠1+∠2=110°,
    ∴∠B′O′C′=180°-110°=70°,

    (3)图1和图2的∠BOC+∠B′O′′=180°(当∠A=∠A′时);
    图1中∠BOC=180°-(∠1+∠2)
    =180°-1/2(∠ABC+∠ACB)

    =180°-1/2(180°-∠A)

    =90°+1/2∠A,
    图2中∠B′O′′=180°-(∠1+∠2)
    =180°-1/2(∠MB′C′+∠NC′B′)

    =180°-1/2[360°-(∠A′B′C′+∠A′C′B′)]

    =1/2(180°-∠A′)
    =90°-1/2∠A′,

    ∵∠A=∠A′=n°,

    ∴∠BOC+∠B′O′′=180°