limx→1,lnx⼀x-1用洛必达法则求极限

2025-06-01 08:22:20
推荐回答(1个)
回答1:

x/(x-1)-1/lnx=(xlnx-x+1)/(x-1)lnx。当x趋于1时,分子分母都趋于0。故可用上下求导:即:lim(xlnx-x+1)/(x-1)lnx=lim(lnx+1-1)/(lnx+(x-1)/x)=lim(xlnx)/(xlnx+x-1)=lim(lnx+1)/(lnx+2)=1/2。即极限为1/2。